# BeCALM: Multiplication Concepts 

## Beginning Curriculum for Adults Learning Math Remote-Ready Curriculum

## STUDENT PACKET



Because math and science build futures

Created with funding from the Adult and Community Learning Services division of the Massachusetts Department of Elementary and Secondary Education by the SABES Mathematics and Adult Numeracy Curriculum \& Instruction PD Center, which is managed by TERC, Inc.

## BeCALM: Multiplication Concepts

## Acknowledgements

The titles in the BeCALM series were developed by Melissa Braaten for the SABES Mathematics and Adult Numeracy Curriculum \& Instruction PD Center, with contributions from Yvonne Readdy and Sherry Soares.

The activities on pages 4 and 8:
Investigations Grade 3, Curriculum Unit: "THINGS THAT COME IN GROUPS" © 1998 by Savvas Learning Company LLC, or its affiliates. Used by permission. All rights reserved. [NOTE: The presented content is for example only, and may not appear in the same format (or order) as the original publication.]

## The activity on page 7:

by Jo Boaler/YouCubed. Licensed under CC BY 4.0.
The activities on pages 31-39, 41-43, 48-50, and 80-82:
EMPower Plus book Everyday Number Sense: Mental Math and Visual Models

## UNIT 1: Visual Patterns in Multiplication

Financial Literacy: Beliefs and Attitudes about Money

From my culture


From my family

My personal beliefs and attitudes about money

## Things That Come in Groups

We often want to count items in groups, rather than one by one. Multiplication is a way to count things in equal sized groups.

Shoes and socks are sold in pairs (groups of 2), tires may be sold in groups of 4, and eggs are often sold in groups of 12 (a dozen). Do you buy drinks that come in six-packs? What can you think of that is usually sold in groups of a certain size?

There are also "groups" that are not physical objects. We create tenand twenty-dollar bills so we can count money more easily. We make groups out of measurements, such as grouping 7 days into a week, 60 seconds into a minute, or 12 inches into a foot.

Brainstorm below some other groups you encounter in your daily life.

| Groups of 5 | Groups of 10 | Groups of 100 |
| :--- | :--- | :--- |
| Example: fingers on a hand | Example: years in a decade |  |
|  |  |  |
|  |  |  |
| Groups of __ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

[^0]Vocabulary List for This Unit

| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Visual Numbers


















Activity images by Jo Boaler/YouCubed. Licensed under CC BY 4.0. https://www.youcubed.org/wp-content/uploads/2019/08/WIM-Number-Visuals-Grades-3-5.pdf

## Arrays That Total 36

Here are five arrays for 36.

1. Label the dimensions of each array.
2. Write a multiplication sentence for each array.


## 3. List all the factors of 36 here:

## 4. Explain how you did one of these problems.

## Talking About Groups



## 5 groups of 3


number of groups

size of the group
 groups of $\qquad$

___groups of $\qquad$

| Draw "3 groups of 2" | Draw "2 groups of 4" |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |

## Talking About Multiplication



Examples:

3 times 6 equals 18.
3 multiplied by 6 is 18 .
3 groups of 6 is equal to 18 .


Examples:
18 is the product of 3 and 6 .
3 and 6 are factors of 18.
Other factors of 18 are 1, 2, 9, and 18.

## Exit Ticket/Homework

Choose one of the options below.
Choice 1: Find a number for which you can draw at least three different arrays. Sketch them below.

Choice 2: Find the number under 50 that has the most arrays. Explain how you know with words, pictures, or equations.
$\qquad$

Multiplication Concepts: Unit 1, Visual Patterns in Multiplication

| Objective | My Progress <br> (Struggling, Learning, Mastery) |
| :--- | :--- |
| I can identify factors and <br> products. |  |
| I can see and describe visual <br> patterns in factors and <br> products. |  |
| I can break up a pattern into <br> smaller parts. <br> (Quick Images) |  |
| I can write expressions equal to <br> a target number. <br> (Number of the Day) |  |

# UNIT 2: Number Patterns in Multiplication 

Financial Literacy: Costs That Repeat
Subscription and membership fees:

Examples:

Payment plans:

Examples:

Products that are consumed:

Examples:

Other costs that repeat:

Fatima pays $\$ 12$ per month for internet in her home.

How much does she pay for 6 months of internet? Show your thinking below.

For the examples below, write an addition expression and a multiplication expression that could be used to find the total cost.

Example: Gym Membership
$\$ 30$ per month for 6 months

| Using repeated addition | Using multiplication |
| :--- | :--- |
| $30+30+30+30+30+30$ | $30 \times 6$ |

1) Video Streaming Service: $\$ 8$ per month for 12 months (1 year) $\square$

| Using repeated addition | Using multiplication |
| :--- | :--- |
|  |  |

2) Car Payments: $\$ 120$ per month for 3 months

| Using repeated addition | Using multiplication |
| :--- | :--- |
|  |  |

3) Prescription Medications: $\$ 15$ per month for $\mathbf{4}$ months

| Using repeated addition | Using multiplication |
| :--- | :--- |
|  |  |
|  |  |

## BeCALM Number Sense <br> Vocabulary List for This Unit

| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Multiplication Table (grid)

| $x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |

## Multiplication Table (lists)

| $1 \times 0=0$ | $2 \times 0=0$ | $3 \times 0=0$ | $4 \times 0=0$ | $5 \times 0=0$ | $6 \times 0=0$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \times 1=1$ | $2 \times 1=2$ | $3 \times 1=3$ | $4 \times 1=4$ | $5 \times 1=5$ | $6 \times 1=6$ |
| $1 \times 2=2$ | $2 \times 2=4$ | $3 \times 2=6$ | $4 \times 2=8$ | $5 \times 2=10$ | $6 \times 2=12$ |
| $1 \times 3=3$ | $2 \times 3=6$ | $3 \times 3=9$ | $4 \times 3=12$ | $5 \times 3=15$ | $6 \times 3=18$ |
| $1 \times 4=4$ | $2 \times 4=8$ | $3 \times 4=12$ | $4 \times 4=16$ | $5 \times 4=20$ | $6 \times 4=24$ |
| $1 \times 5=5$ | $2 \times 5=10$ | $3 \times 5=15$ | $4 \times 5=20$ | $5 \times 5=25$ | $6 \times 5=30$ |
| $1 \times 6=6$ | $2 \times 6=12$ | $3 \times 6=18$ | $4 \times 6=24$ | $5 \times 6=30$ | $6 \times 6=36$ |
| $1 \times 7=7$ | $2 \times 7=14$ | $3 \times 7=21$ | $4 \times 7=28$ | $5 \times 7=35$ | $6 \times 7=42$ |
| $1 \times 8=8$ | $2 \times 8=16$ | $3 \times 8=24$ | $4 \times 8=32$ | $5 \times 8=40$ | $6 \times 8=48$ |
| $1 \times 9=9$ | $2 \times 9=18$ | $3 \times 9=27$ | $4 \times 9=36$ | $5 \times 9=45$ | $6 \times 9=54$ |
| $1 \times 10=10$ | $2 \times 10=20$ | $3 \times 10=30$ | $4 \times 10=40$ | $5 \times 10=50$ | $6 \times 10=60$ |
| $1 \times 11=11$ | $2 \times 11=22$ | $3 \times 11=33$ | $4 \times 11=44$ | $5 \times 11=55$ | $6 \times 11=66$ |
| $1 \times 12=12$ | $2 \times 12=24$ | $3 \times 12=36$ | $4 \times 12=48$ | $5 \times 12=60$ | $6 \times 12=72$ |
| $7 \times 0=0$ | $8 \times 0=0$ | $9 \times 0=0$ | $10 \times 0=0$ | $11 \times 0=0$ | $12 \times 0=0$ |
| $7 \times 1=7$ | $8 \times 1=8$ | $9 \times 1=9$ | $10 \times 1=10$ | $11 \times 1=11$ | $12 \times 1=12$ |
| $7 \times 2=14$ | $8 \times 2=16$ | $9 \times 2=18$ | $10 \times 2=20$ | $11 \times 2=22$ | $12 \times 2=24$ |
| $7 \times 3=21$ | $8 \times 3=24$ | $9 \times 3=27$ | $10 \times 3=30$ | $11 \times 3=33$ | $12 \times 3=36$ |
| $7 \times 4=28$ | $8 \times 4=32$ | $9 \times 4=36$ | $10 \times 4=40$ | $11 \times 4=44$ | $12 \times 4=48$ |
| $7 \times 5=35$ | $8 \times 5=40$ | $9 \times 5=45$ | $10 \times 5=50$ | $11 \times 5=55$ | $12 \times 5=60$ |
| $7 \times 6=42$ | $8 \times 6=48$ | $9 \times 6=54$ | $10 \times 6=60$ | $11 \times 6=66$ | $12 \times 6=72$ |
| $7 \times 7=49$ | $8 \times 7=56$ | $9 \times 7=63$ | $10 \times 7=70$ | $11 \times 7=77$ | $12 \times 7=84$ |
| $7 \times 8=56$ | $8 \times 8=64$ | $9 \times 8=72$ | $10 \times 8=80$ | $11 \times 8=88$ | $12 \times 8=96$ |
| $7 \times 9=63$ | $8 \times 9=72$ | $9 \times 9=81$ | $10 \times 9=90$ | $11 \times 9=99$ | $12 \times 9=108$ |
| $7 \times 10=70$ | $8 \times 10=80$ | $9 \times 10=90$ | $10 \times 10=100$ | $11 \times 10=110$ | $12 \times 10=120$ |
| $7 \times 11=77$ | $8 \times 11=88$ | $9 \times 11=99$ | $10 \times 11=110$ | $11 \times 11=121$ | $12 \times 11=132$ |
| $7 \times 12=84$ | $8 \times 12=84$ | $9 \times 12=108$ | $10 \times 12=120$ | $11 \times 12=132$ | $12 \times 12=144$ |

Describe a pattern that you see.
Useful words:
odd/even ones place tens place multiples of
$\qquad$
$\qquad$
$\qquad$

Describe another pattern that you see.
Useful words:
odd/even ones place tens place multiples of
$\qquad$
$\qquad$

## Equations

These are equations.

$$
\begin{array}{ll}
2 \times 3=6 & 6=2+2+2 \\
6 \times 1=3 \times 2 & 2 \times 3=3+3
\end{array}
$$

What do they have in common?

What is different? Do any of them surprise you?

## What Is an Equation?

An equation is a math sentence. It says that both sides of the equal sign have the same value.


This has a value of 10 .
This has a value of 10 .

Equations can look like this, with a single number on one side:

$$
2 \times 3=6 \quad 6=2+2+2
$$

or like this, with operations on both sides:

$$
6 \times 1=3 \times 2 \quad 2 \times 3=3+3
$$

All of these are true equations, since both sides of the equal sign have the same value.

## Two Truths and a Lie

Two of these statements are true, and one is false. Can you find the lie?
A) $4+4+4=3+3+3+3$
B) $5 \times 3=15-5$
C) $2 \times 3=2+2+2$

Two of these statements are true, and one is false.
Can you find the lie?
A) $10+0=5 \times 2$
B) $6+6+6=6 \times 3$
C) $4 \times 6=24+2$


There are 4 groups of 6 .
4 and 6 are factors.
24 is the product.

Length: 6


Width: 4

The length is 6 . The width is 4 .
This rectangle is 6 by 4 .
The area of the rectangle is 24 .

Practice describing each array using the language of rectangles.
A)


The length is $\qquad$ . The width is $\qquad$ -

This rectangle is $\qquad$ by $\qquad$ .

The area of this rectangle is $\qquad$ .
B)


The length is $\qquad$ . The width is $\qquad$ .

This rectangle is $\qquad$ by $\qquad$ .

The area of this rectangle is $\qquad$ .

## Exit Ticket/Homework

Create your own two truths and a lie below.
Two of the equations must be true, one must be false.
$\qquad$

Multiplication Concepts: Unit 2, Number Patterns in Multiplication

| Objective | My Progress <br> (Struggling, Learning, Mastery) |
| :--- | :--- |
| I can find number patterns in <br> factors and products. |  |
| I understand that the equal sign <br> means that the right and left <br> side have the same value. |  |
| I can break up a pattern into <br> smaller parts. <br> (Quick Images) |  |
| I can write expressions equal to <br> a target number. <br> (Number of the Day) |  |
| I can decide if a math sentence is <br> true or false. <br> (Two Truths and a Lie) |  |

## UNIT 3: Equivalent Expressions

Financial Literacy: One-Time Purchase or Subscription?


Jean-Pierre just bought a new computer. He wants to be able to create documents on it using a word processing program.
He has two choices:

- He can buy the program and download it on his computer for $\$ 160$. (One time purchase)
- He can pay for a subscription that allows him to use the program. This costs $\$ 50$ per year. (Subscription)

One time Purchase (\$160)

| Pros | Cons |
| :--- | :--- |
|  |  |
|  |  |

Subscription (\$50 per year)

| Pros | Cons |
| :--- | :--- |
|  |  |
|  |  |

Vocabulary List for This Unit

| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |


| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Windows



[^1]
## Pictures and Numbers

Choose one picture from this page and one from the next page. For each, find the total number of objects in the picture, but don't count one by one. Write down two or more ways to find the total.

1. Soda Cans

2. Fingers

3. Heads


Reprinted with permission of World Education

## 4. Stamps



## 5. Chocolates



Source: EMPower Plus book Everyday Number Sense: Mental Math and Visual Models

## Counting Smart

Take a handful of paper clips, pennies, or tiles. Arrange them as arrays so you can see how many there are without counting each one.

1. Sketch your arrangement using columns and rows.
2. Write an equation that shows how you can find the total amount without counting each item.
3. Sketch another arrangement. If you did not try arranging by 10 's, try that now.
4. Write an expression that shows how you found the total amount without counting each item.

## Garden Pathway

Valerie and Rebecca own a landscaping business. A customer wants them to install a garden and a pathway made of square tiles surrounding it. This is the picture the customer provided.


Each woman saw the math differently. Of course, they didn't count each tile! Show two different ways that Valerie and Rebecca could have figured out the number of tiles.

1. First way:
2. Second way:

Source: EMPower Plus book Everyday Number Sense: Mental Math and Visual Models

## Expressions, Arrays, and Stories

## Part 1

Circle the expressions that do not match the picture.
Reminder: Parentheses indicate multiplication or tell you to do the operation inside them first.

1. $10+10+3$
$3 \times 3+10$
$10 \times 2+3$
$3+2(10)$

2. $3 \times 10+7$
$10+10+10+7$
$3(10+3)$
$4 \times 7-3$

3. $5+5+5+5+5 \quad 5(5) \quad 5 \times 5+5+5+5 \quad 5^{2}$


## Part 2

Match each story to one of the pictures above.
4. Zippy and four friends combine their money. Each person gives the same amount, $\$ 5$.

## Array

$\qquad$
5. Zippy and two friends want to buy a gift for their teacher. The two friends can spend $\$ 10$ each. Zippy has $\$ 3$.

Array $\qquad$
6. Zippy and three friends order take-out. Everybody chips in $\$ 10$ but Zippy. He is $\$ 3$ short.

Array $\qquad$

Source: EMPower Plus book Everyday Number Sense: Mental Math and Visual Models

## How Do You See It?

For each picture below, give the total number of shapes or coins, without counting one by one.
Circle the groups you see in each picture. Write two different expressions to show how you could find the total.

1. Circle the groups you see in each picture as you figure out the total. Write two expressions that describe what you see.
a.


Expression 1: $\qquad$ Expression 2: $\qquad$
b.


Expression 1: $\qquad$ Expression 2: $\qquad$


Expression 1: $\qquad$ Expression 2: $\qquad$
2. Show with words or an expression how you found the total number of tiles.
a.


## Words/Expression:

## b. Show with words or an expression how you could find the total another way.

The way I see it is...
I see ___ groups of $\qquad$
Another way to see it is...
My expression is...
My strategy was to...
I think they saw it this way...
One thing I tried that didn't work...
I am wondering...
I noticed that...
I am confused about...

## Exit Ticket/Homework: Cartons of Eggs



1. Without counting each egg, how many do you see?
2. How did you think of your answer?
3. List with words and numbers each step you took mentally or on paper to find the total.
4. Write another expression to show how you could count the eggs.

Source: EMPower Plus book Everyday Number Sense: Mental Math and Visual Models

## Test Practice

1. Which of the following expressions might be used to count the cookies on the tray?

A. $6+6+6$
B. $6 \times 3$
C. $6 \times 6$
(a) A only
(b) B only
(c) C only
(d) A and B
(e) A and C
2. Select the expression that is not equivalent to the rest of the expressions.
(a) $36+4(5)$
(b) $4(9)+20$
(c) $3(12)+20$
(d) $4(9)+4(6)$
(e) $2(18)+2(10)$
3. The mayor wants all of the front windows on the city's eight libraries to be cleaned. Charlie's Windows charges $\$ 6$ per window for cleaning. Which of the following expressions shows how much Charlie's Windows will charge the city?
(a) $6(3 \times 4)$
(b) $6+(3 \times 4) 8$
(c) $8(12+6)$
(d) $6(4 \times 12)$
(e) $\quad 6(3 \times 4 \times 8)$

4. Lois enters a party room and sees people sitting at round tables. Eight people are seated at each of 12 tables and five people at each of two other tables. How many people does Lois see?
$\qquad$

Multiplication Concepts: Unit 3, Equivalent Expressions

| Objective | My Progress <br> (Struggling, Learning, Mastery) |
| :--- | :--- |
| I can express repeated addition <br> as multiplication. |  |
| I can use arrays to model <br> multiplication expressions and <br> scenarios. |  |
| I can find equivalent expressions <br> for an array. (Array of the Day) |  |
| I can write expressions equal to <br> a target number. <br> (Number of the Day) |  |
| I can decide if a math sentence is <br> true or false. <br> (Two Truths and a Lie) |  |

# UNIT 4: Breaking into Parts 

## Financial Literacy: Small Costs That Add Up

1. Jayla loves to get a coffee on her way to work. She pays about $\$ 3$ for her favorite coffee drink. She does this 4 times per week.

How much does Jayla usually spend on coffee in a month?

2. Jayla usually spends about $\qquad$ on coffee in a month. Write an addition expression and a multiplication expression for how much she would spend on coffee in 12 months (1 year).

| Addition Expression | Multiplication Expression |
| :--- | :--- |
|  |  |

3. Solve for the total, using a strategy that makes sense to you.

Vocabulary List for This Unit

| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Breaking Up Arrays

One way to show multiplication is with a rectangular array.

1. Look at this example:

a. Explain in words what you see happening.
b. Explain in mathematical symbols what is happening.
2. Below is an $8 \times 9$ array.
a. Break it up into a new multiplication problem.

b. Explain in words what you see happening.
c. Explain using mathematical symbols what is happening.
3. Below is a $5 \times 12$ array.
a. Break it up into a new multiplication problem.

b. Explain in words what you see happening.
c. Explain using mathematical symbols what is happening.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |









|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



Use the Partial Products Finder or grid paper to help you find the missing number.
A) $6 \times 7=6 \times 4+6 \times$ $\qquad$
B) $9 \times 8=\ldots \times 8+4 \times 8$
C) $\quad$ _ $\quad 7=2 \times 7+5 \times 7$
D) $6 \times 7=5 \times 7+\ldots \times 7$
E) $7 \times \ldots=5 \times 6+2 \times 6$
F) $\quad 9 \times 9=5 \times 9+\ldots \times 9$
G) $8 \times 7=\ldots \times 7+5 \times 7$

## Performance Task: Graduation Seating

1. Design an arrangement for 60 chairs in the space available.
2. Mark where you will put the chairs on the diagram provided (you can use the side with the grid or the blank side.)
3. Write an expression that represents your array and show how it is equal to 60 .

Things to consider:

- Everyone must be able to see the podium.
- Graduates need to be able to process in from the door to the podium.
- 15 chairs are for the graduates; think about where you want them to sit.

Rubric

| Criteria | Outstanding | Good | Needs Support |
| :---: | :--- | :--- | :--- |
| Real world <br> considerations | The plan takes all real <br> world considerations <br> into account: everyone <br> can see the podium and <br> graduates and others <br> can easily get in and <br> out. | The plan takes some <br> of these <br> considerations into <br> account, but one or <br> more issues may <br> come up if this was <br> really carried out. | The plan is not <br> realistic and has <br> multiple problems. |
| Math <br> Expression | The math expression is <br> accurate, uses algebraic <br> notation (parentheses <br> for multiplication), and <br> clearly reflects the way <br> that the chairs are <br> arranged. | The math <br> expression is <br> accurate, but uses <br> arithmetic notation <br> and does not clearly <br> reflect the <br> arrangement. | The math <br> expression is <br> inaccurate or uses <br> notation incorrectly. |

## $\frac{\text { BeCALM: Multiplication Concepts }}{\text { Community Room }}$



Each square $=2 \mathrm{ft} \times 2 \mathrm{ft}$


## Talking about Arrays



Write three sentences to describe the array of chocolates above.

Useful words:

| rows | columns | __groups of |
| :--- | :--- | :--- |
| factors | product | equation |

$\qquad$

Multiplication Concepts: Unit 4, Breaking into Parts

| Objective | My Progress <br> (Struggling, Learning, Mastery) |
| :--- | :--- |
| I can break multiplication <br> problems into smaller parts <br> with an array. |  |
| I can break multiplication into |  |
| smaller parts with numbers. |  |$\quad$| I can find equivalent |
| :--- |
| expressions for an array. |
| (Array of the Day) |$\quad$| I can write expressions equal to |
| :--- |
| a target number. |
| (Number of the Day) |$\quad$| I can decide if a math sentence <br> is true or false. <br> (Two Truths and a Lie) |
| :--- |

## UNIT 5: Application Project

Financial Literacy: Placing an Order

Discussion questions:
When have you had to place an order?

How have you placed an order?
On paper
Over the phone
Online

If you were ordering office supplies for your workplace, what information would you need to know?

Vocabulary List for This Unit

| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Word | Definition | Example |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Price/Quantity Slides



## \$3 per box







\$2 each


## Sample Invoice



Mel's Office Supplies
123 Main St
notreal@gmail.com
123-456-7890

## INVOICE

| Invoice No: | \#INV00001 |
| :--- | ---: |
| Invoice Date: | $11 / 11 / 11$ |
| Due Date: | $12 / 12 / 12$ |


| DESCRIPTION | QUANTITY | UNIT PRICE | TOTAL |  |
| :---: | :---: | :---: | :---: | :---: |
| Staplers | 4 | \$ 5.00 | \$ | 20.00 |
| Inkjet Printers | 2 | \$ 100.00 | \$ | 200.00 |
| Printing paper (reams) | 10 | \$ 4.00 | \$ | 40.00 |
| Office Chairs | 3 | \$ 30.00 | \$ | 90.00 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | SUBTOTAL | \$ | 350.00 |
|  |  | DISCOUNT | \$ | - |
|  | SUBTOTAL L | SS DISCOUNT | \$ | 350.00 |
| Thank you for your business! |  | TAX RATE |  | 0.00\% |
|  |  | TOTAL TAX | \$ | - |
|  | SHIPP | NG/HANDLING | \$ | - |
|  |  | Balance Due | \$ | 350.00 |

## Fill Out the Invoice (practice)



Mel's Office Supplies
123 Main St
notreal@gmail.com
123-456-7890

| Invoice No: | \#INV00001 |
| :--- | ---: |
| Invoice Date: | $11 / 11 / 11$ |
| Due Date: | $12 / 12 / 12$ |


| DESCRIPTION |  |  |
| :---: | :---: | :---: |
| Staplers | \$ 5.00 |  |
| Inkjet Printers | \$ 100.00 |  |
| Printing paper (reams) | \$ 4.00 |  |
| Office Chairs | \$ 30.00 |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | SUBTOTAL |  |
|  | DISCOUNT | \$ |
|  | SUBTOTAL LESS DISCOUNT | \$ |
| Thank you for your business! | TAX RATE | 0.00\% |
|  | TOTAL TAX | \$ |
|  | SHIPPING/HANDLING | \$ |
|  | Balance Due | \$ |

## BBQ Invoice Project

Your job is to plan a party for 10 people. Your total budget is $\$ 110$. You don't have to spend all of the money, but you can't go over.

Decide how many of each to order from the catering company and fill out the invoice.

| Catering | Quantity | Price | Total Cost |
| :--- | :---: | :---: | :---: |
| Roast chicken <br> (per person) |  | $\$ 9.00$ |  |
| Veggie burger <br> (per person) |  | $\$ 7.00$ |  |
| Steak (per person) |  | $\$ 11.00$ |  |
| Unlimited soda <br> (per person) |  | $\$ 1.00$ |  |
| 2 drinks, beer/wine <br> (per person) |  | $\$ 5.00$ |  |
|  |  |  |  |
| Grand total |  |  |  |

## Rubric for BBQ Project

| Criteria | Outstanding | Good | Needs Support |
| :--- | :--- | :--- | :--- |
| Real world <br> considerations | The invoice fits the <br> budget and provides <br> food and drink for all <br> guests in a realistic way. | The invoice fits the <br> budget and <br> provides food for all <br> guests. | The invoice is over <br> budget and/or does <br> not provide enough <br> food for all guests. |
|  | Mental math, paper <br> and pencil, and <br> calculators are all used <br> strategically and <br> efficiently to solve the <br> problem. | Some thought <br> given to using <br> different tools. <br> Sore than one tool <br> Tools | No thought given <br> to choosing tools <br> used throughout <br> the task. |
| strategically. Tools <br> chosen are too <br> laborious or reply <br> exclusively on <br> calculator without <br> considering a way <br> to check for <br> reasonableness. |  |  |  |

## Talking About Price and Quantity

Customer: How much do the notebooks cost?
Salesperson: The notebooks are $\$ 3.99$ each.
Customer: I would like to order 10 notebooks.
Salesperson: Ok, 10 notebooks at $\$ 3.99$ each...that is $\$ 39.90$. Did you want to add anything else to your order?

Customer: Yes, I would like to order pens.
How much does a box of 20 pens cost?
Salesperson: Boxes of 20 pens are $\$ 2.10$ per box.
Customer: I'll take 3 boxes.
Salesperson: Ok, 3 boxes at $\$ 2.10$ per box is $\$ 6.30$ for the pens. Your total is $\$ 46.20$.

## (1) Test Practice

1. Tom said he figured out the number of tiles needed for the floor of his kitchen with the equation $4 \times 8+2$. Which of the following arrangements shows a possible tile arrangement for Tom's kitchen?
A.

D.

B.

C.

(a) A
(b) $B$
(c) C
(d) D
(e) E
E.

- $0 \cdot 0$
- -9
-     -         -             -                 -                     - 

2. Every month, Marlene pays $\$ 16$ for basic local phone service. Most months she has no extra charge. This past year, she did have an extra charge of $\$ 10$ for one month. Which of the following expressions shows a way to find how much Marlene paid for her phone service this past year?
(a) $12(\$ 10)+\$ 16$
(b) $12(\$ 16)+\$ 10$
(c) $12(\$ 16+\$ 10)$
(d) $\$ 16(12+\$ 10)$
(e) $\$ 16(\$ 10)+12$
3. Eric charged 10 items last month on his credit card. Each item cost about $\$ 25$. When he received his bill, he noticed that he had a $\$ 25$ credit from a returned purchase made the previous month. What is the approximate amount of Eric's current bill?
(a) $\$ 60$
(b) $\$ 175$
(c) $\$ 225$
(d) $\$ 250$
(e) $\$ 275$
4. Laila works at a daycare center. Each day she takes out four six-packs of juice for the toddlers. Each toddler gets one serving of juice. Today, three toddlers are not in school. Which of the following expressions shows the number of juices Sara will use today?
(a) $4 \times 6$
(b) $4(6)+3$
(c) $4(6)-3$
(d) $24 \div 6$
(e) $24 \div 4$
$\qquad$

## Multiplication Concepts: Unit 5, Application Project

| Objective | My Progress <br> (Struggling, Learning, Mastery) |
| :--- | :--- |
| I can complete an invoice, using <br> multiplication to find the total <br> cost. |  |
| I can find equivalent expressions <br> for an array. (Array of the Day) |  |
| I can write expressions equal to <br> a target number. <br> (Number of the Day) |  |
| I can decide if a math sentence is <br> true or false. <br> (Two Truths and a Lie) |  |







## BeCALM: Multiplication Concepts Student Packet





Multiplication Table (grid)

| $x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |



OLI $=0 L \times$ LI LZI $=\tau \tau \times \tau \tau$ て\＆I $=$ ZI $\times \tau \tau$

| $\bigcirc$ | ナ | $\infty$ | $\underset{\sim}{\sim}$ | $\stackrel{0}{6}$ | $\stackrel{\ominus}{\mathrm{N}}$ | $\stackrel{\checkmark}{\sim}$ | $\stackrel{\infty}{N}$ | $\underset{m}{n}$ | o | $\bigcirc$ | $\underset{\downarrow}{\star}$ | $\underset{\downarrow}{\infty}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 11 | 11 | 11 | II | 11 | 11 | II | 11 | 11 | 11 | 11 | II |
| 0 | $\checkmark$ | $\sim$ | $m$ | ナ | ก | 0 | N | $\infty$ | $\sigma$ | $\stackrel{O}{-}$ | $\underset{\sim}{\underset{~}{H}}$ | $\underset{\sim}{\sim}$ |
| $\times$ |
| $\checkmark$ | ナ | ナ | ナ | $\nabla$ | ナ | ナ | ナ | $\nabla$ | ナ | $\checkmark$ | ナ | ナ |



| $\bigcirc$ | $m$ | 0 | の | $\leftharpoondown$ | $\underset{\sim}{\sim}$ | $\stackrel{\infty}{\infty}$ | $\underset{\sim}{\sim}$ | $\underset{\sim}{\sim}$ | $\stackrel{N}{N}$ | o | $m$ | 0 $m$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 11 | II | 11 | 11 | 11 | 11 | 11 | 11 | 11 | II | 11 | 11 |
| $\bigcirc$ | $\stackrel{\rightharpoonup}{1}$ | N | m | $\checkmark$ | ம | 6 | N | $\infty$ | $\sigma$ | $\stackrel{\ominus}{-}$ | $\underset{~}{\underset{H}{H}}$ | $\stackrel{\sim}{\sim}$ |
| $\times$ |
| $\cdots$ | $m$ | m | $m$ | $m$ | $n$ |


| $\bigcirc$ | $\sigma$ | $\underset{\sim}{\infty}$ | $\underset{N}{N}$ | $\begin{aligned} & \text { n } \\ & \text { n } \end{aligned}$ | $\stackrel{\bullet}{\forall}$ | $\stackrel{\downarrow}{\dagger}$ | $\underset{6}{n}$ | $N$ | $\underset{\infty}{\vec{\infty}}$ | o | $\sigma$ | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |  |
| $\bigcirc$ | $\checkmark$ | N | m | $\checkmark$ | ค | $\bullet$ | N | $\infty$ | の |  |  | N |
| $\times$ |
| $\sigma$ |






[^0]:    Adapted from Investigations Grade 3, Curriculum Unit: "THINGS THAT COME IN GROUPS" © 1998 by Savvas Learning Company LLC, or its affiliates. Used by permission. All rights reserved. [NOTE: The presented content is for example only, and may not appear in the same format (or order) as the original publication.]

[^1]:    Source: EMPower Plus book Everyday Number Sense: Mental Math and Visual Models

